

GREG BELL Lieutenant Governor

Amanda Smith
Executive Director

DIVISION OF WATER QUALITY
Walter L. Baker, P.E.

Director

Department of Environmental Quality

FILE COPY

JUN 0 4 2013

CERTIFIED MAIL (Return Receipt Requested)

Val Killian, Public Works Director Neola Improvement District PO Box 207 Neola, UT 84053 Document Date 6/4/2013

DWQ-2013-003994

Dear Mr. Killian:

Subject:

UPDES Permit UT0023001, Neola Improvement District

Enclosed is UPDES permit No. UT0023001 for your facility. Copies of EPA form 3320-1, Discharge Monitoring Report (DMR) forms, for reporting and self-monitoring requirements as specified in the permit, will be sent as soon as printed. This permit will become effective on June 01, 2013, subject to the right of appeal in accordance with the provisions of *Utah Administrative Code*, Section R317-9.

As the State agency charged with the administration of issuing UPDES Permits, we are continuously looking for ways to improve our quality of service to you. In effort to improve the State UPDES permitting process we are asking for your input. Since our customer permittee base is limited, your input is important. Please take a few moments to complete an online survey (Go to www.waterquality.utah.gov and click on the 'Give Feedback to DWQ button on the left side of page.) The results will be used to improve our quality and responsiveness to our permittees and give us feedback on customer satisfaction. We will address the issues you have identified on an ongoing basis.

Page 2 Mr. Killian

If you have any questions with regard to this matter, please contact Matthew Garn at mgarn@utah.gov or at (801) 536-4381.

Sincerely,

John Kennington, P.E. Manager UPDES Engineering Section

JK:MG:mc

Enclosures (3):

- 1. Fact Sheet Statement of Basis (FSSOB), (DWQ-2013-001768)
- 2. Waste Load Analysis (WLA), (DWQ-2013-002011)

3. Permit, (DWQ-2013-001719)

cc:

Amy Clark, EPA Region VIII (w/encl)

Darrin Brown, Tricounty Health Department (w/encl)

DWQ-2013-003689

FILE COPY

FACT SHEET STATEMENT OF BASIS NEOLA IMPROVEMENT DISTRICT RENEWAL PERMIT: DISCHARGE, BIOSOLIDS & STORM WATER UPDES PERMIT NUMBER: UT0023001 MINOR MUNICIPAL

FACILITY CONTACTS

Person Name:

Max Warren

Position:

Facility Manager

Facility Name:

Neola Improvement District

Mailing Address:

P.O. Box 246

Neola, Utah 84053

Telephone:

(435) 353-4582

DESCRIPTION OF FACILITY

The Neola Wastewater Treatment Facility (NWTF) is located in Duchesne County, near the south slope of the Uintah Mountains. The lagoons were originally constructed in 1963 as a total containment lagoon system with three cells utilizing 5.9 acres. As a result of high ground water infiltrating the lagoon and sewer system the lagoons were expanded in 1971. The upgraded facility has five lagoons with a total of 15.5 acres. The system was intended to be a non-discharging facility but sees the need to discharge during times of the year when ground water infiltration of the system is high. NWTF generally discharges during the late winter/early spring months. The facility serves the Neola Improvement District (NID) with a current population of approximately 450. The average design flow is 0.88 MGD. The discharge is located at latitude 40°24'30" and longitude 110°01'30", with an outfall STORET Number 493475.

SUMMARY OF CHANGES FROM PREVIOUS PERMIT

All limitations will remain the same as those in the previous permit. Based on effluent monitoring data and the capacity of the existing treatment facility, Neola is expected to be able to comply with the limitations.

DISCHARGE

DESCRIPTION OF DISCHARGE

When necessary, the NWTF discharges into an irrigation ditch named the Class E ditch. Neola has submitted discharge monitoring reports (DMRs) from which effluent data was taken for discharge concentrations used in the waste load allocation.

<u>Outfall</u>

Description of Discharge Point

001

A 10" concrete outfall pipe located at latitude 40°24'30" and longitude 110°01'30" on the southwest side of the lagoon system and discharging to the Class E ditch.

RECEIVING WATERS AND STREAM CLASSIFICATION

The final discharge flows into Class E ditch. Class E. Ditch has been classified as Class 2B, Class 3E, and Class 4 according to *Utah Administrative Code (UAC) R317-2-13*.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3E Severly habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

BASIS FOR EFFLUENT LIMITATIONS

Limitations on total suspended solids (TSS), biochemical oxygen demand (BOD₅), E. Coli, pH and percent removal for BOD₅ and TSS are based on current Utah Secondary Treatment Standards, UAC R317-1-3.2. Limit for total dissolved solids (TDS) is based on the waste load analysis (WLA). The oil and grease is based on best professional judgment (BPJ). The permit limitations are:

	Effluent Limitations					
Parameter	Maximum Monthly Average	Maximum Weekly Average	Daily Minimum	Daily Maximum		
Flow, MGD	0.88	NA	ÑA	NA		
BOD ₅ , mg/L	25	35	NA	NA		
BOD ₅ Min. % Removal	85	NA	NA	NA		
TSS, mg/L	25	35	NA	NA		
TSS Min. % Removal	85	NA	NA	NA		
E. Coli, No./100mL	126	157	NA	NA		
TDS, mg/L	NA	NA	NA	1200		
pH, Standard Units	NA	NA	6.5	9		

NA – Not Applicable.

SELF-MONITORING AND REPORTING REQUIREMENTS

The following self-monitoring requirements are the same as in the previous permit. The permit will require reports to be submitted monthly and quarterly, as applicable, on Discharge Monitoring Report (DMR) forms due 28 days after the end of the monitoring period. Lab sheets for biomonitoring must be attached to the biomonitoring DMR.

Self-Monitoring and Reporting Requirements					
Parameter	Frequency	Sample Type	Units		
Total Flow	Continuous	Recorder	MGD		
BOD ₅ , Influent	Monthly	Composite	mg/L		
Effluent	Monthly	Composite	mg/L		
TSS, Influent	Monthly	Composite	mg/L		
Effluent	Monthly	Composite	mg/L		
E. Coli	Monthly	Grab	No./100mL		
TDS, Influent	Monthly	Grab	mg/L		
Effluent	Monthly	Grab	mg/L		
pН	Monthly	Grab	SU		

BIOSOLIDS

As required by the 1987 amendments to the Federal *Clean Water Act*, EPA has established toxic contaminant criteria and other requirements for sewage sludge use and disposal by works treating domestic sewage. These regulations are found in *Title 40* of the *Code of Federal Regulations, Part 503*. The biosolids (sludge) management program was delegated to the State of Utah on June 14, 1996. The 503 regulations are implemented by the issuance of permits, as needed and appropriate.

Because the permitted facility is a lagoon, there is no regular biosolids production. Therefore, the requirements of Part 503 do not apply unless or until sludge is removed from the bottom of the lagoon and used or disposed of in some way. When planning biosolids removal, the permittee should contact the DWQ for guidance.

STORM WATER

Wastewater treatment facilities, which include lagoon systems, are required to comply with storm water permit requirements if they meet one or both of the following criteria,

- 1. The facility has an approved pretreatment program as described in 40 CFR Part 403.
- 2. The facility has a design flow of 1.0 MGD or greater.

The NWTF facility does not meet either of the criteria; therefore a storm water permit is not required at this time. A storm water re-opener provision is included in the permit should a storm water permit be needed in the future.

PRETREATMENT REQUIREMENTS

The permittee has not been designated for pretreatment program development because it does not meet conditions which necessitate a full program. The flow through the plant is less than five (5) MGD, there are no categorical industries discharging to the treatment facility, industrial discharges comprise less than 1 percent of the flow through the treatment facility, and there is no indication of pass through or interference with the operation of the treatment facility such as upsets or violations of the POTW's UPDES permit limits.

Although the permittee does not have to develop a State-approved pretreatment program, any wastewater discharges to the sanitary sewer are subject to Federal, State and local regulations. Pursuant to Section 307 of the Clean Water Act, the permittee shall comply with all applicable Federal General Pretreatment Regulations promulgated, found in 40 CFR 403 and the State Pretreatment Requirements found in UAC R317-8-8.

An industrial waste survey (IWS) is required of the permittee as stated in Part II of the permit. The IWS is to assess the needs of the permittee regarding pretreatment assistance. The IWS is required to be submitted within sixty (60) days after the issuance of the permit. If an Industrial User begins to discharge or an existing Industrial User changes their discharge the permittee must resubmit an IWS no later than sixty days following the introduction or change as stated in Part II of the permit.

It is required that the permittee submit for review any local limits that are developed to the Division of Water Quality for review. If local limits are developed it is required that the permittee perform an annual evaluation of the need to revise or develop technically based local limits for pollutants of concern, to implement the general and specific prohibitions 40 CFR, Part 403.5(a) and Part 403.5(b). This evaluation may indicate that present local limits are sufficiently protective, need to be revised or should be developed.

BIOMONITORING REQUIREMENTS

As part of a nationwide effort to control toxic discharges, biomonitoring requirements are being included in permits for facilities where effluent toxicity is an existing or potential concern. In Utah, this is done in accordance with the *State of Utah Permitting and Enforcement Guidance Document for Whole Effluent Toxicity Control (Biomonitoring)*. Authority to require effluent biomonitoring is provided in *Permit Conditions, UAC R317-8-4.2*, *Permit Provisions, UAC R317-8-5.3* and *Water Quality Standards, UAC R317-2-5 and R317-2-7.2*.

The potential for toxicity is not deemed sufficient to require biomonitoring or whole effluent toxicity (WET) limits because there are no present or anticipated industrial dischargers on the system nor are there any anticipated for the duration of this permit. The waste discharge is anticipated to be household waste only. Therefore, biomonitoring is not required in this permit, however the permit will contain a WET reopener provision.

PERMIT DURATION

It is recommended that this permit be effective for a duration of five (5) years.

Drafted by
Matthew Garn
Jennifer Robinson, Pretreatment
Utah Division of Water Quality
February 20, 2013

PUBLIC NOTICE

Began: March 13, 2013 Ended: April 18, 2013

Public Noticed in The Vernal Express

There were no comments received during the public notice period.

May 20, 2013

DWQ-2013-001768

FILE COPY

Utah Division of Water Quality Salt Lake City, Utah

WASTELOAD A Addendum: Sta SUMMARY						
Discharging Facility:	Neola City W	WTP				
UPDES No: Current Flow: Design Flow		MGD MGD	Design Flov	V		
Receiving Water:	Irrigation Dit	ch				
Stream Classification: Stream Flows [cfs]:	0.0 0.0 0.0	Summer (J Fall (Oct-D Winter (Jar Spring (Ap Average	ec) n-Mar)	7Q10 Estimate 7Q10 Estimate 7Q10 Estimate 7Q10 Estimate		
Stream TDS Values:	500.0 500.0 500.0	Summer (J Fall (Oct-D Winter (Jar Spring (Ap	ec) n-Mar)	80th Percentile 80th Percentile 80th Percentile 80th Percentile		
Effluent Limits:				WQ Standard:		
Flow, MGD: BOD, mg/l: Dissolved Oxygen, mg/ TNH3, Chronic, mg/l: TDS, mg/l:	25.0 I NA NA	MGD Summer Summer Summer Summer	5.0	w Indicator 30 Day Average Function of pH and	d Temperature	
Modeling Parameters: Acute River Width: Chronic River Width:	50.0% 50.0%					
Antidegradation Leve	I II Review is	NOT Requi	red		Date:	2/13/2013

Permit Writer:		
WLA by:	Fred Ullin	2-27-13
WQM Sec. Approval:		
TMDL Sec. Approval;		

WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis

13-Feb-13 4:00 PM

Facilities:

Neola City WWTP Irrigation Ditch

UPDES No: UT-0023001
THIS IS A DRAFT DOCUMENT

I. Introduction

Discharging to:

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Irrigation Ditch:

2B, 3E, 4

Antidegradation Review:

Antidegratation Level II NOT Required

III. Numeric Stream Standards for Protection of Aquatic Wildlife

Total Ammonia (TNH3)

Varies as a function of Temperature and pH Rebound. See Water Quality Standards

Chronic Total Residual Chlorine (TRC)

0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average)

Chronic Dissolved Oxygen (DO)

5.00 mg/l (30 Day Average) N/A mg/l (7Day Average) 3.00 mg/l (1 Day Average

Maximum Total Dissolved Solids

1200.0 mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
Parameter	Concentration	Load*	Concentration		Load*
Aluminum	87.00 ug/l**	0.638 lbs/day	750.00	ug/l	5.503 lbs/day
Arsenic	190.00 ug/l	1.394 lbs/day	340.00	ug/l	2.495 lbs/day
Cadmium	0.57 ug/l	0.004 lbs/day	5.92	ug/l	0.043 lbs/day
Chromium III	196.18 ug/l	1.439 lbs/day	4104.39	ug/l	30.117 lbs/day
ChromiumVI	11.00 ug/l	0.081 lbs/day	16.00	ug/l	0.117 lbs/day
Copper	22.01 ug/l	0.161 lbs/day	36.06	ug/l	0.265 lbs/day
iron	3		1000.00	ug/l	7.338 lbs/day
Lead	11.43 ug/l	0.084 lbs/day	293.23	ug/l	2.152 lbs/day
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.018 lbs/day
Nickel	122.01 ug/l	0.895 lbs/day	1097.37	ug/l	8.052 lbs/day
Selenium	4.60 ug/l	0.034 lbs/day	20.00	ug/l	0.147 lbs/day
Silver	N/A ug/l	N/A lbs/day	21.29	ug/l	0.156 lbs/day
Zinc	280.61 ug/l	2.059 lbs/day	280.61	ug/l	2.059 lbs/day
* Allow	red below discharge	•			. 50 // 0-00

^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 273.02 mg/l as CaCO3

Organics [Pesticides]							
-	4 Day Averag	e (Chror	nic) Standard		1 Hour A	verage (Acute	e) Standard
Parameter	Concent		Lo	ad*	Concentration		Load*
Aldrin					1.500	ug/l	0.011 lbs/day
Chlordane	0.004	ug/l	0.032	lbs/day	1.200	ug/i	0.009 lbs/day
DDT, DDE		ug/l	0.007	lbs/day	0.550	ug/l	0.004 lbs/day
Dieldrin		ug/l	0.014	lbs/day	1.250	ug/l	0.009 lbs/day
Endosulfan	0.056	ug/l	0.411	lbs/day	0.110	ug/l	0.001 lbs/day
Endrin		ug/l	0.017	lbs/day	0.090	ug/l	0.001 lbs/day
Guthion		·			0.010	ug/l	0.000 lbs/day
Heptachlor	0.004	ug/l	0.028	lbs/day	0.260	ug/l	0.002 lbs/day
Lindane		•	0.587	lbs/day	1.000	ug/l	0.007 lbs/day
Methoxychlor					0.030	ug/l	0.000 lbs/day
Mirex					0.010	ug/l	0.000 lbs/day
Parathion					0.040	ug/l	0.000 lbs/day
PCB's		ug/l	0.103	lbs/day	2.000	ug/l	0.015 lbs/day
Pentachlorophenoi			95.461	lbs/day	20.000	ug/l	0.147 lbs/day
Toxephene		•	0.001	lbs/day	0.7300	ug/l	0.005 lbs/day

IV. Numeric Stream Stand					
4	Day Average (Chronic) §	Standard	1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*	
Arsenic			100.0 ug/l	lbs/day	
Boron			750.0 ug/l	lbs/day	
Cadmium			10.0 ug/l	lbs/day	
Chromium			100.0 ug/l	lbs/day	
Copper			200.0 ug/l	lbs/day	
Lead			100.0 ug/l	lbs/day	
Selenium			50.0 ug/l	lbs/day	
TDS, Summer			1200.0 mg/l	4.40 tons/day	

v. Numeric Stream Stan	dards for Protection of Hu	ıman Health (Ci	iass 10 waters)		
4	Day Average (Chronic) St	andard	1 Hour Average (Acute) Standard		
Metals	Concentration	Load*	Concentration	Load*	
Arsenic			ug/l	lbs/day	
Barium			ug/l	lbs/day	
Cadmium			ug/l	lbs/day	
Chromium			ug/l	lbs/day	
Lead			ug/l	lbs/day	
Mercury			ug/I	lbs/day	
Selenium			ug/I	lbs/day	
Silver			ug/l	lbs/day	
Fluoride (3)			ug/l	lbs/day	
to			ug/l	lbs/day	
Nitrates as N			ug/l	lbs/day	
Chlorophenoxy Herbicio	ies				
2,4-D			ug/l	lbs/day	
2,4,5-TP			ug/l	lbs/day	
Endrin			ug/l	lbs/day	
ocyclohexane (Lindane)			ug/l	lbs/day	
Methoxychlor			ug/l	lbs/day	
Toxaphene			ug/l	lbs/day	

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

Maximum Conc., ug/I - Acute Standards

	Class 1C		Class 3A, 3B	
Toxic Organics	[2 Liters/Day for 70 Kg	Person over 70 Yr.)	[6.5 g for 70 Kg Person over 70 Yr.]	
Acenaphthene	ug/l	lbs/day	ug/l	lbs/day
Acrolein	ug/l	lbs/day	ug/l	lbs/day
Acrylonitrile	ug/l	lbs/day	ug/l	lbs/day
Benzene	ug/l	lbs/day	ug/l	lbs/day
Benzidine	ug/l	lbs/day	ug/l	lbs/day
Carbon tetrachloride	ug/l	lbs/day	ug/l	lbs/day
Chlorobenzene	ug/l	lbs/day	ug/l	lbs/day
1,2,4-Trichlorobenzene				
Hexachlorobenzene	ug/l	lbs/day	ug/l	lbs/day
1,2-Dichloroethane	ug/l	lbs/day	ug/l	lbs/day

1,1,1-Trichloroethane				
Hexachloroethane	ug/l	lbs/day	ug/l	lbs/day
1,1-Dichloroethane				
1,1,2-Trichloroethane	ug/l	lbs/day	ug/l	lbs/day
1,1,2,2-Tetrachloroethai	ug/l	lbs/day	ug/l	lbs/day
Chloroethane			ug/l	lbs/day
Bis(2-chloroethyl) ether	ug/l	ibs/day	ug/l	lbs/day
2-Chloroethyl vinyl ether	ug/l	lbs/day	ug/l	lbs/day
2-Chloronaphthalene	ug/l	lbs/day	ug/l	lbs/day
2,4,6-Trichlorophenol	ug/l	lbs/day	ug/l	lbs/day
p-Chloro-m-cresol	·		ug/l	lbs/day
Chloroform (HM)	ug/l	lbs/day	ug/l	lbs/day
2-Chlorophenol	ug/l	lbs/day	ug/l	lbs/day
1,2-Dichlorobenzene	ug/l	lbs/day	ug/l	lbs/day
1,3-Dichlorobenzene	ug/l	lbs/day	ug/l	lbs/day
1,4-Dichlorobenzene	ug/l	lbs/day	∘ ug/l	lbs/day
3,3'-Dichlorobenzidine	ug/l	lbs/day	ug/i	lbs/day
1,1-Dichloroethylene	ug/l	lbs/day	ug/l	lbs/day
1,2-trans-Dichloroethyle	ug/l	lbs/day	ug/l	lbs/day
2,4-Dichlorophenol	ug/l	lbs/day	ug/l	lbs/day
1,2-Dichloropropane	ug/l	lbs/day	ug/l	lbs/day
1,3-Dichloropropylene	ug/l	lbs/day	ug/l	lbs/day
2,4-Dimethylphenol	ug/l	lbs/day	ug/l	lbs/day
2,4-Dinitrotoluene	ug/l	lbs/day	ug/l	lbs/day
2,6-Dinitrotoluene	ug/l	lbs/day	ug/l	lbs/day
1,2-Diphenylhydrazine	ug/l	lbs/day	ug/l	lbs/day
Ethylbenzene	ug/l	lbs/day	ug/l	lbs/day
Fluoranthene	ug/l	lbs/day	ug/l	lbs/day
4-Chlorophenyl phenyl ether	wg.,	,	J	·
4-Bromophenyl phenyl ether				
Bis(2-chloroisopropyl) e	ug/l	lbs/day	ug/l	ibs/day
Bis(2-chloroethoxy) met	ug/l	lbs/day	ug/l	lbs/day
Methylene chloride (HM	ug/l	lbs/day	ug/l	lbs/day
Methyl chloride (HM)	ug/l	lbs/day	ug/l	lbs/day
Methyl bromide (HM)	ug/l	lbs/day	ug/l	lbs/day
Bromoform (HM)	ug/l	lbs/day	ug/l	lbs/day
Dichlorobromomethane	ug/l	lbs/day	ug/l	lbs/day
Chlorodibromomethane	ug/l	lbs/day	ug/l	ibs/day
Hexachlorobutadiene(c)	ug/l	lbs/day	ug/l	lbs/day
Hexachlorocyclopentadi	ug/l	lbs/day	ug/l	lbs/day
Isophorone	ug/l	lbs/day	ug/l	lbs/day
Naphthalene	ugn	,	J	•
Nitrobenzene	ug/l	lbs/day	ug/l	lbs/day
2-Nitrophenol	ug/l	lbs/day	ug/l	lbs/day
4-Nitrophenol	ug/l	lbs/day	ug/l	lbs/day
	ug/l	lbs/day	ug/l	lbs/day
2,4-Dinitrophenol	ug/l	lbs/day	ug/l	lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day	ug/l	lbs/day
N-Nitrosodimethylamine	-	lbs/day	ug/l	lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day	ug/l	lbs/day
N-Nitrosodi-n-propylami	ug/l	lbs/day	ug/l	lbs/day
Pentachlorophenol	ug/l	ib3/day	~9/ ·	

Phenol	//	lbo/day		llee /elec
	ug/l	lbs/day	ug/l	lbs/day
Bis(2-ethylhexyl)phthala	ug/i	lbs/day	ug/l	lbs/day
Butyl benzyl phthalate	ug/l	lbs/day	ug/l	lbs/day
Di-n-butyl phthalate	ug/l	lbs/day	ug/l	lbs/day
Di-n-octyl phthlate				
Diethyl phthalate	ug/l	lbs/day	ug/I	lbs/day
Dimethyl phthlate	ug/l	lbs/day	ug/l	lbs/day
Benzo(a)anthracene (P/	ug/l	lbs/day	ug/l	lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day	ug/l	lbs/day
Benzo(b)fluoranthene (F	ug/l	lbs/day	ug/l	lbs/day
Benzo(k)fluoranthene (F	ug/l	lbs/day	ug/l	lbs/day
Chrysene (PAH)	ug/l	lbs/day	ug/l	lbs/day
Acenaphthylene (PAH)	-	•		•
Anthracene (PAH)	ug/l	lbs/day	ug/l	lbs/day
Dibenzo(a,h)anthracene	ug/l	lbs/day	ug/l	lbs/day
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day	ug/l	lbs/day
Pyrene (PAH)	ug/l	lbs/day	ug/l	lbs/day
Tetrachloroethylene.	ug/l	lbs/day	ug/l	lbs/day
Toluene	ug/l	lbs/day	ug/l	lbs/day
Trichloroethylene	ug/l	lbs/day	ug/l	lbs/day
Vinyl chloride	ug/l	lbs/day	ug/l	lbs/day
Vinyi ornorido	ugn	ib3/day	ug/i	lbs/day
Pesticides				ibs/day
Aldrin	uall	lbs/dov	ua/l	
Dieldrin	ug/l	lbs/day	ug/l	lbs/day
Chlordane	ug/l	lbs/day	ug/l	lbs/day
	ug/l	lbs/day	ug/l	lbs/day
4,4'-DDT	ug/l	lbs/day	ug/l	lbs/day
4,4'-DDE	ug/l	lbs/day	ug/l	lbs/day
4,4'-DDD	ug/l	lbs/day	ug/l	lbs/day
alpha-Endosulfan	ug/l	lbs/day	ug/l 	lbs/day
beta-Endosulfan	ug/l	lbs/day	ug/l	lbs/day
Endosulfan sulfate	ug/l	lbs/day	ug/l	lbs/day
Endrin	ug/l	lbs/day	ug/l	lbs/day
Endrin aldehyde	ug/l	lbs/day	ug/l	lbs/day
Heptachlor	ug/l	lbs/day	ug/l	lbs/day
Heptachlor epoxide				
PCB's				
PCB 1242 (Arochlor 124	ug/l	lbs/day	ug/l	lbs/day
PCB-1254 (Arochlor 125	ug/l	lbs/day	ug/l	lbs/day
PCB-1221 (Arochlor 122	ug/l	lbs/day	ug/l	lbs/day
PCB-1232 (Arochlor 12)	ug/l	lbs/day	ug/l	lbs/day
PCB-1248 (Arochlor 124	ug/l	lbs/day	ug/l	lbs/day
PCB-1260 (Arochlor 126	ug/l	lbs/day	ug/l	lbs/day
PCB-1016 (Arochlor 10'	ug/l	lbs/day	ug/l	lbs/day
TOB TOTO (Alloomer To	ugn	ibs/day	ugn	ibs/day
Pesticide				
Toxaphene	ug/l		ug/l	lbs/day
Dioxin				
	المن	lbo <i>ldo</i>		
Dioxin (2,3,7,8-TCDD)	ug/l	lbs/day		

Metals				
Antimony	ug/l	lbs/day		N - (-1
Arsenic	ug/l	lbs/day	ug/l	lbs/day
Asbestos	ug/l	lbs/day		
Beryllium				
Cadmium				
Chromium (III)	9			
Chromium (VI)				
Copper				n / 1
Cyanide	ug/l	lbs/day	ug/l	lbs/day
Lead	ug/l	lbs/day		
Mercury	· ·		ug/l	lbs/day
Nickel			ug/l	lbs/day
Selenium	ug/l	lbs/day		
Silver	ug/l	lbs/day		
Thallium		-	ug/l	lbs/day
Zinc			21	
2110				

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

- (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).
- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD)
Temperature, Deg. C.
pH
Total Residual Chlorine (TRC), mg/l
Total NH3-N, mg/l
Total Dissolved Solids (TDS), mg/l
Metals, ug/l
Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream	Information
·	Stream
	Critical Love

	Critical Low							
	Flow	Temp.	pН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	0.0	15.0	8.0	0.03	0.10	13.13	0.00	500.0
Fall	0.0	8.0	8.0	0.03	0.10		0.00	500.0
Winter	0.0	5.0	8.0	0.03	0.10		0.00	500.0
Spring		10.0	8.0	0.03	0.10	1110 3	0.00	500.0
Dissolved	Al	As	Cd	Crlll	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	1.59*	0.53*	0.053*	0.53*	2.65*	0.53*	0.83*	0.53*
Dissolved	Hg	^ā Ni	Se	Ag	Zn	Boron		
Metals	-	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	_	0.53*	1.06*	0.1*	0.053*	10.0	*	1/2 MDL

Projected Discharge Information

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	0.88000	··· NA	500.00	1.83443
Fall	0.88000	NA		
Winter	0.88000	NA		
Spring	0.88000	NA		

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Averag	ge
Summer	0.880 MGD	1.361 cfs
Fall	0.880 MGD	1.361 cfs
Winter	0.880 MGD	1.361 cfs
Spring	0.880 MGD	1.361 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.88 MGD. If the discharger is allowed to have a flow greater than 0.88 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occurring, the permit writers must include the discharge flow limitiation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
	IC25 >	99.9% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration	
Summer	25.0 mg/l as BOD5	183.4 lbs/day
Fall	25.0 mg/l as BOD5	183.4 lbs/day
Winter	25.0 mg/l as BOD5	183.4 lbs/day
Spring	25.0 mg/l as BOD5	183.4 lbs/day

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	NA
Fall	NA
Winter	NA
Spring	NA

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

Seas	on		
d	Concentra	ation	Load
Summer	4 Day Avg Chronic	NA mg/l as N	NA lbs/day
	1 Hour Avg Acute	NA mg/l as N	NA lbs/day
Fall	4 Day Avg Chronic	NA mg/l as N	NA lbs/day
	1 Hour Avg Acute	NA mg/l as N	NA lbs/day
Winter	4 Day Avg Chronic	NA mg/l as N	NA lbs/day
	1 Hour Avg Acute	NA mg/l as N	NA lbs/day
Spring	4 Day Avg Chronic	NA mg/l as N	NA lbs/day
	1 Hour Avg Acute	NA mg/l as N	NA lbs/day

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentration	Load	
Summer	4 Day Avg Chronic	NA mg/l	NA lbs/day	
	1 Hour Avg Acute	NA mg/l	NA lbs/day	
Fall	4 Day Avg Chronic	NA mg/l	NA lbs/day	
	1 Hour Avg Acute	NA mg/ł	NA lbs/day	
Winter	4 Day Avg Chronic	NA mg/i	NA lbs/day	
	1 Hour Avg Acute	NA mg/l	NA lbs/day	
Spring	4 Day Avg Chronic	NA mg/l	NA lbs/day	
- F5	1 Hour Avg Acute	NA mg/l	NA lbs/day	

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentration		Load	ī
Summer Fall Winter Spring	Maximum, Acute Maximum, Acute Maximum, Acute 4 Day Avg Chronic	1200.5 1200.5 1200.5 1200.5	mg/l mg/l mg/l mg/l	4.40 4.40 4.40 4.40	tons/day tons/day tons/day tons/day
Colorado S	Salinity Forum Limits	Determine	ed by Pe	rmitting Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 273.02 mg/l):

	4 Day Average			1 Hour				
	Concent	tration	Lo	ad	Concentration		Load	
Aluminum	N/A		N/A		750.5	ug/l	5.5 1	bs/day
Arsenic	190.14	ug/l	0.9	lbs/day	` 340.2	ug/l	2.5 1	bs/day
Cadmium	0.57	ug/l	0.0	lbs/day	5.9	ug/l	0.0	bs/day
Chromium III		ug/l	0.9	lbs/day	4,107.4	ug/l	30.1	bs/day
Chromium VI		-	0.1	lbs/day	16.0	ug/l	0.1 I	bs/day
Copper	22.02	-	0.1	lbs/day	36.1	ug/l	0.3 1	bs/day
Iron	N/A	- 0	N/A	·	1,000.7	ug/l	7.3 1	bs/day
Lead	11.43	ug/l	0.1	lbs/day	293.4	ug/l	2.2	bs/day
Mercury		•	0.0	lbs/day	2.4	ug/l	0.0 I	bs/day
Nickel	122.10	ug/l	0.6	lbs/day	1,098.2	ug/l	8.1 I	bs/day
Selenium		ug/l	0.0	lbs/day	20.0	ug/l	0.1	bs/day
Silver	N/A	-	N/A	lbs/day	21.3	ug/l	0.2 I	lbs/day

Zinc	280.82 ug/l	1.3 lbs/day	280.8	ug/l	2.1 lbs/day
Cyanide	5.20 ug/l	0.0 lbs/day	22.0	ug/l	0.2 lbs/day

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer NA	Deg. C,	NA	Deg. F
Fall NA	Deg. C,	NA	Deg. F
Winter NA	Deg. C.	NA	Deg. F
Spring NA	Deg. C.	NA	Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour Average		
	Concentration	Load	Concentration		Load
Aldrin			1.5E+00	ug/l	1.70E-02 lbs/day
Chlordane	4.30E-03 ug/l	3.16E-02 lbs/day	1.2E+00	ug/l	1.36E-02 lbs/day
DDT, DDE	1.00E-03 ug/l	7.34E-03 lbs/day	5.5E-01	ug/l	6.24E-03 lbs/day
Dieldrin	1.90E-03 ug/l	1.39E-02 lbs/day	1.3E+00	ug/l	1.42E-02 lbs/day
Endosulfan	5.60E-02 ug/l	4.11E-01 lbs/day	1.1E-01	ug/l	1.25E-03 lbs/day
Endrin	2.30E-03 ug/l	1.69E-02 lbs/day	9.0E-02	ug/l	1.02E-03 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.14E-04 lbs/day
Heptachlor	3.80E-03 ug/l	2.79E-02 lbs/day	2.6E-01	ug/l	2.95E-03 lbs/day
Lindane	8.00E-02 ug/l	5.87E-01 lbs/day	1.0E+00	ug/l	1.14E-02 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	3.41E-04 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.14E-04 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	4.54E-04 lbs/day
PCB's	1.40E-02 ug/l	1.03E-01 lbs/day	2.0E+00	ug/l	2.27E-02 lbs/day
Pentachlorophenol	1.30E+01 ug/l	9.54E+01 lbs/day	2.0E+01	ug/l	2.27E-01 lbs/day
Toxephene	2.00E-04 ug/l	1.47E-03 lbs/day	7.3E-01	ug/l	8.29E-03 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

	1 Hour Average		
	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	36.7 lbs/day	
Nitrates as N	4.0 mg/l	29.4 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.4 lbs/day	
Total Suspended Solids	90.0 mg/l	660.4 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

muent iimit as ioliows.	Maximum Concentration		
	Concentration	Load	
Toxic Organics			
Acenaphthene	ug/l	lbs/day	
Acrolein	ug/l	lbs/day	
Acrylonitrile	ug/l	lbs/day	
Benzene	ug/l	lbs/day	
Benzidine	ug/l	lbs/day	
Carbon tetrachloride	ug/l	lbs/day	
Chlorobenzene	ug/l	lbs/day	
1,2,4-Trichlorobenzene			
Hexachlorobenzene	ug/l	lbs/day	
1,2-Dichloroethane	ug/l	lbs/day	
1,1,1-Trichloroethane		Us a Jalan	
Hexachloroethane	ug/i	lbs/day	
1,1-Dichloroethane	11	lba/day	
1,1,2-Trichloroethane	ug/l	lbs/day	
1,1,2,2-Tetrachloroethane	ug/l	lbs/day	
Chloroethane		lbs/day	
Bis(2-chloroethyl) ether	ug/l	ibs/day	
2-Chloroethyl vinyl ether	ua/l	lbs/day	
2-Chloronaphthalene	ug/l	lbs/day	
2,4,6-Trichlorophenol	ug/l	. IDS/day	
p-Chloro-m-cresol	ug/l	lbs/day	
Chloroform (HM)	ug/l	lbs/day	
2-Chlorophenol	ug/l	ibs/day	
1,2-Dichlorobenzene	ug/l	lbs/day	
1,3-Dichlorobenzene	ugn	ibsiday	

4.4 = 4.11		
1,4-Dichlorobenzene	ug/l	lbs/day
3,3'-Dichlorobenzidine	ug/l	lbs/day
1,1-Dichloroethylene	ug/l	lbs/day
1,2-trans-Dichloroethylene1		
2,4-Dichlorophenol	ug/l	lbs/day
1,2-Dichloropropane	ug/l	lbs/day
1,3-Dichloropropylene	ug/l	lbs/day
2,4-Dimethylphenol	ug/l	lbs/day
2,4-Dinitrotoluene	ug/l	lbs/day
2,6-Dinitrotoluene		
1,2-Diphenylhydrazine	ug/l	lbs/day
Ethylbenzene	ug/l	lbs/day
Fluoranthene	ug/l	lbs/day
4-Chiorophenyl phenyl ether		•
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	ug/l	lbs/day
Bis(2-chloroethoxy) methane	3	
Methylene chloride (HM)	ug/l	lbs/day
Methyl chloride (HM)	49.1	100/44
Methyl bromide (HM)		
Bromoform (HM)	ug/l	lbs/day
Dichlorobromomethane(HM)	ug/l	lbs/day
Chlorodibromomethane (HM)	~	•
, ,	ug/l	lbs/day
Hexachlorocyclopentadiene	ug/l	lbs/day
Isophorone	ug/l	lbs/day
Naphthalene		
Nitrobenzene	ug/l	lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	ug/l	lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day
N-Nitrosodi-n-propylamine	ug/l	lbs/day
Pentachlorophenol	ug/l	lbs/day
Phenol	ug/l	lbs/day
Bis(2-ethylhexyl)phthalate	ug/l	lbs/day
Butyl benzyl phthalate	ug/l	lbs/day
Di-n-butyl phthalate	ug/l	lbs/day
Di-n-octyl phthlate	·	•
Diethyl phthalate	ug/l	lbs/day
Dimethyl phthlate	ug/l	lbs/day
Benzo(a)anthracene (PAH)	ug/l	lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day
Benzo(b)fluoranthene (PAH)	ug/l	lbs/day
Benzo(k)fluoranthene (PAH)	ug/l	lbs/day
Chrysene (PAH)	ug/l	lbs/day
Acenaphthylene (PAH)	49/1	ibaruay
Anthracene (PAH)		
, ,	ua/l	lha lala
Dibenzo(a,h)anthracene (PAH)	ug/l	lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	ug/i	lbs/day

- (544)		lhalday
Pyrene (PAH)	ug/l	lbs/day
Tetrachloroethylene	ug/l	lbs/day
Toluene	ug/l	lbs/day
Trichloroethylene	ug/l	lbs/day
Vinyl chloride	ug/l	lbs/day
Pesticides		
Aldrin	ug/l	lbs/day
Dieldrin	ug/l	lbs/day
Chlordane	ug/l	lbs/day
4,4'-DDT	ug/l	lbs/day
4,4'-DDE	ug/l	lbs/day
4,4'-DDD	ug/l	lbs/day
alpha-Endosulfan	ug/l	lbs/day
beta-Endosulfan	ug/l	lbs/day
Endosulfan sulfate	ug/l	lbs/day
Endrin	ug/l	lbs/day
Endrin aldehyde	ug/l	lbs/day
Heptachlor	ug/l	lbs/day
Heptachlor epoxide	_	
		2
PCB's	ua/l	lbs/day
PCB 1242 (Arochlor 1242)	ug/l	•
PCB-1254 (Arochlor 1254)	ug/l	lbs/day
PCB-1221 (Arochlor 1221)	ug/l	lbs/day
PCB-1232 (Arochlor 1232)	ug/l	lbs/day
PCB-1248 (Arochlor 1248)	ug/l	lbs/day
PCB-1260 (Arochlor 1260)	ug/l	lbs/day
PCB-1016 (Arochlor 1016)	ug/l	lbs/day
Pesticide		
Toxaphene	ug/l	lbs/day
Metals		lha/day
Antimony	ug/l	lbs/day
Arseniç	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium		
Cadmium		
Chromium (III)		
Chromium (VI)		11 (-1
Copper	ug/l	lbs/day
Cyanide	ug/l	lbs/day
Lead		11 2-1
Mercury	ug/l	lbs/day
Nickel	ug/i	lbs/day
Selenium		
Silver		
Thallium	ug/l	lbs/day
Zinc		

Dioxin

Dioxin (2,3,7,8-TCDD)

#N/A ug/l

#N/A lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum						0.0	N/A
Antimony				4303.2		4303.2	
Arsenic	100.1				0.0	100.1	
Barium						0.0	
Beryllium						0.0	
Cadmium	10.0				0.0	10.0	
Chromium (III)					0.0	0.0	
Chromium (VI)	1 00.1				0.0	100.07	
Copper	200.1					200.1	
Cyanide		NA	NA			220161.6	5.2
Iron						0.0	
Lead	100.1				0.0	100.1	
Mercury				0.15	0.0	0.15	
Nickel				4603.4		4603.4	
Selenium	50.0				0.0	50.0	
Silver					0.0	0.0	
Thallium				6.3		6.3	
Zinc						0.0	
Boron	750.6					750.6	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l	
Aluminum	0.0	N/A	
Antimony	4303.16		
Arsenic	100.1		Acute Controls
Asbestos	0.00E+00		
Barium			
Beryllium			
Cadmium	10.0		Acute Controls
Chromium (III)	0.0		Acute Controls
Chromium (VI)	100.1		Acute Controls
Copper	200.1		Acute Controls

Cyanide	220161.6	5.2	
Iron	0.0		
Lead	100.1		Acute Controls
Mercury	0.150		Acute Controls
Nickel	4603.4		Acute Controls
Selenium	50.0		Acute Controls
Silver	0.0	N/A	
Thallium	6.3		
Zinc	0.0		Acute Controls
Boron	750.55		

Other Effluent Limitations are based upon R317-1.

E. coli

126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an

Antidegradation Level II Review is NOT Required

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

THIS IS A DRAFT DOCUMENT

Utah Division of Water Quality 801-538-6052 File Name: Neola_WLA_2-13-13.xls

APPENDIX - Coefficients and Other Model Information

CBOD	CBOD	CBOD	REAER.	REAER.	REAER.	NBOD	NBOD
Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.
(Kd)20	FORCED	(Ka)T	(Ka)20	FORCED	(Ka)T	(Kn)20	(Kn)T
1/day	(Kd)/day	1/day	(Ka)/day	1/day	1/day	1/day	1/day
2.000	0.000	0.804	1147.367	0.000	716.553	0.600	0.130
Open Coeff. (K4)20 1/day 0.000	Open Coeff. (K4)T 1/day 0.000	NH3 LOSS (K5)20 1/day 4.000	NH3 (K5)T 1/day 1.607	NO2+NO3 LOSS (K6)20 1/day 0.000	NO2+NO3 (K6)T 1/day 0.000	TRC Decay K(Cl)20 1/day 32.000	TRC K(Cl)(T) 1/day 10.065
BENTHIC DEMAND (SOD)20 gm/m2/day 1.000	BENTHIC DEMAND (SOD)T gm/m2/day 0.286						
K1	K2	K3	K4		K6	K(CI)	S
CBOD	Reaer.	NH3	Open		NO2+3	TRC	Benthic
{theta}	{theta}	{theta}	{theta}		{theta}	{theta}	{theta}
1.0	1.0	1.1	1.0		1.0	1.1	1.1

THIS IS A DRAFT DOCUMENT

Review by:	2/27/2013
₩	
•	
•	
*	
6	
<u>\$</u>	
•	

FILE COPY

STATE OF UTAH DIVISION OF WATER QUALITY DEPARTMENT OF ENVIRONMENTAL QUALITY SALT LAKE CITY, UTAH

UTAH POLLUTANT DISCHARGE ELIMINATION SYSTEM (UPDES) PERMITS

Minor Municipal Permit No. UT0023001

In compliance with provisions of the Utah Water Quality Act, Title 19, Chapter 5, Utah Code Annotated ("UCA") 1953, as amended (the "Act"),

NEOLA IMPROVEMENT DISTRICT

is hereby authorized to discharge from its wastewater treatment facility to receiving waters named CLASS E DITCH,

in accordance with specific limitations, outfalls, and other conditions set forth herein.

This permit shall become effective on June 01, 2013

This permit expires at midnight on May 31, 2013.

whitelen

Signed this 4th day of June, 2013

John J. Whitehead Acting Director

Utah Division of Water Quality

Table of Contents

-	tems of interest Page Number	
I.	DISCHARGE LIMITATIONS AND REPORTING REQUIREMENTS	
Α	. Description of Discharge Point	1
В.		
C.	Specific Limitations and Self-Monitoring Requirements	
D	. Reporting of Wastewater Monitoring Results	3
II.	INDUSTRIAL PRETREATMENT PROGRAM	Δ
A		
В		
III.	MONITORING, RECORDING & GENERAL REPORTING REQUIREMENTS	7
A		
В.		NAMES OF
C.		ucuen
D.		
E.		55000
F.		
G		
H		
I.	Other Noncompliance Reporting	
J.	Inspection and Entry	C
IV.	COMPLIANCE RESPONSIBILITIES	10
Α.		10
В.		10
C.		
D.		
E.		
F.	• •	
G.		11
H.	Upset Conditions.	12
V.	GENERAL REQUIREMENTS	14
A.		
В.	_	
C.	*	
D.		
E.		
F.	Other Information	
G.	Signatory Requirements	14
Η.		
I.	Availability of Reports	
J.	Oil and Hazardous Substance Liability	16
K.	Property Rights	16
L.		
M		
N.		
Ο.	THE CONTRACTOR OF THE PROPERTY	
P.	Biosolids – Reopener Provision	
Q.		
R.		
VI.	DEFINITIONS	
Δ	Wastewater	- 10

I. DISCHARGE LIMITATIONS AND REPORTING REQUIREMENTS

A. <u>Description of Discharge Point</u>. The authorization to discharge wastewater provided under this part is limited to those outfalls specifically designated below as discharge locations. Discharges at any location not authorized under a UPDES permit are violations of the *Act* and may be subject to penalties under the *Act*. Knowingly discharging from an unauthorized location or failing to report an unauthorized discharge may be subject to criminal penalties as provided under the *Act*.

Outfall Number 001 Location of Discharge Outfall
A 10" concrete outfall pipe located at latitude 40°24'30" and longitude 110°01'30" on the southwest side of the lagoon system and discharging to the Class E Ditch.

- B. Narrative Standard. It shall be unlawful, and a violation of this permit, for the permittee to discharge or place any waste or other substance in such a way as will be or may become offensive such as unnatural deposits, floating debris, oil, scum, or other nuisances such as color, odor or taste, or cause conditions which produce undesirable aquatic life or which produce objectionable tastes in edible aquatic organisms; or result in concentrations or combinations of substances which produce undesirable physiological responses in desirable resident fish, or other desirable aquatic life, or undesirable human health effects, as determined by a bioassay or other tests performed in accordance with standard procedures.
- C. Specific Limitations and Self-Monitoring Requirements.
 - 1. Effective immediately and lasting the duration of this permit, the permittee is authorized to discharge from Outfall 001. Such discharges shall be limited and monitored by the permittee as specified below:

	Effluent Limitations a/				
Parameter	Maximum Monthly Average	Maximum Weekly Average	Daily Minimum	Daily Maximum	
Flow, MGD b/ c/	0.88	NA	NA	NA	
BOD ₅ , mg/L	25	35	NA	NA	
BOD ₅ Min. % Removal	85	NA	NA	NA	
TSS, mg/L	25	35	NA	NA	
TSS Min. % Removal	85	NA	NA	NA	
E. Coli, No./100mL	126	157	NA	NA	
TDS, mg/L	NA	NA	NA	1200	
pH, Standard Units	NA	NA	6.5	9	

NA – Not Applicable

Self-Monitoring and Reporting Requirements a/					
Parameter	Frequency Sample Type		Units		
Total Flow b/ c/	Continuous	Recorder	MGD		
BOD ₅ , Influent d/	Monthly	Composite	mg/L		
Effluent	Monthly	Composite	mg/L		
TSS, Influent d/	Monthly	Composite	mg/L		
Effluent	Monthly	Composite	mg/L		
E. Coli	Monthly	Grab	No./100mL		
TDS, Influent d/	Monthly	Grab	mg/L		
Effluent	Monthly	Grab	mg/L		
pH	Monthly	Grab	SU		

a/ See Definitions, Part VIII, for definition of terms.

b/ Flow measurements of influent/effluent volume shall be made in such a manner that the permittee can affirmatively demonstrate that representative values are being obtained.

- c/ If the rate of discharge is controlled, the rate and duration of discharge shall be reported.
- <u>d</u>/ In addition to monitoring the final discharge, influent samples shall be taken and analyzed for this constituent at the same frequency as required for this constituent in the discharge.
 - a. Reporting of Wastewater Monitoring Results. Monitoring results obtained during the previous month shall be summarized for each month and reported on a Discharge Monitoring Report Form (EPA No. 3320-1) or by NetDMR, post-marked or entered into NetDMR no later than the 28th day of the month following the completed reporting period. If no discharge occurs during the reporting period, "no discharge" shall be reported. Legible copies of these, and all other reports including whole effluent toxicity (WET) test reports required herein, shall be signed and certified in accordance with the requirements of Signatory Requirements (see Part VII.G), and submitted by NetDMR, or to the Division of Water Quality at the following address:

Department of Environmental Quality Division of Water Quality PO Box 144870 Salt Lake City, Utah 84114-4870

II. INDUSTRIAL PRETREATMENT PROGRAM

A. Pretreatment Reporting Requirements.

1. Because the design capacity of this municipal wastewater treatment facility is less than 5 MGD, the permittee will not be required to develop a State-approved industrial pretreatment program at this time. However, in order to determine if development of an industrial pretreatment program is warranted, the permittee shall conduct an **industrial waste survey**, as described in *Part II.B.1*, and submit it to the Division of Water Quality within **sixty (60) calendar days** of the effective date of this permit.

B. Industrial Wastes.

- 1. The "Industrial Waste Survey" as required by *Part II.A.1*. consists of; identifying each significant industrial user (SIU), determination of the qualitative and quantitative characteristics of each discharge, and appropriate production data. A (SIU) is defined as an industrial user discharging to a publicly-owned treatment works (POTW) that satisfies any of the following: (1) has a process wastewater flow of 25,000 gallons or more per average work day; (2) has a flow greater than five percent of the flow carried by the municipal system receiving the waste; (3) is subject to Categorical Pretreatment Standards, or (4) has a reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement.
- 2. The permittee must notify the Director of any new introductions by new or existing SIUs or any substantial change in pollutants from any major industrial source. Such notice must contain the information described in 1. above and be forwarded no later than sixty (60) days following the introduction or change.
- 3. Pretreatment Standards (40 CFR 403.5) developed pursuant to Section 307 of The Water Quality Act of 1987 require that under no circumstances shall the permittee allow introduction of the following pollutants into the waste treatment system from any source of non-domestic discharge:
 - a. Pollutants which create a fire or explosion hazard in the publicly owned treatment works (POTW), including, but not limited to, wastestreams with a closed cup flashpoint of less than 140°F (60°C);
 - b. Pollutants, which will cause corrosive structural damage to the POTW, but in no case, discharges with a pH lower than 5.0;
 - c. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the POTW resulting in interference;
 - d. Any pollutant, including oxygen demanding pollutants (BOD, etc.) released in a discharge at such volume or strength as to cause interference in the POTW;

- e. Heat in amounts, which will inhibit biological activity in the POTW, resulting in interference, but in no case, heat in such quantities that the influent to the sewage treatment works exceeds 104°F (40°C);
- f. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause interference or pass through;
- g. Pollutants which result in the presence of toxic gases, vapor, or fumes within the POTW in a quantity that may cause worker health or safety problems; or,
- h. Any trucked or hauled pollutants, except at discharge points designated by the POTW.
- i. Any pollutant that causes pass through or interference at the POTW.
- 4. In addition to the general and specific limitations expressed above, more specific pretreatment limitations have been and will be promulgated for specific industrial categories under Section 307 of the Water Quality Act of 1987 as amended (WQA). (See 40 CFR, Subchapter N, Parts 400 through 500, for specific information).
- 5. The permittee shall provide adequate notice to the Director and the Division of Water Quality Industrial Pretreatment Coordinator of;
 - a. Any new introduction of pollutants into the treatment works from an indirect discharger (i.e., industrial user) which would be subject to *Sections 301* or *306* of the *WOA* if it were directly discharging those pollutants;
 - b. Any substantial change in the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit; and
 - c. For the purposes of this section, adequate notice shall include information on:
 - (1) The quality and quantity of effluent to be introduced into such treatment works; and,
 - (2) Any anticipated impact of the change on the quantity or quality of effluent to be discharged from such publicly owned treatment works.
- 6. At such time as a specific pretreatment limitation becomes applicable to an industrial user of the permittee, the Director may, as appropriate, do the following:
 - a. Amend the permittee's UPDES discharge permit to specify the additional pollutant(s) and corresponding effluent limitation(s) consistent with the applicable national pretreatment limitation;

- b. Require the permittee to specify, by ordinance, contract, or other enforceable means, the type of pollutant(s) and the maximum amount which may be discharged to the permittee's facility for treatment. Such requirement shall be imposed in a manner consistent with the POTW program development requirements of the *General Pretreatment Regulations* at 40 CFR 403; and/or,
- c. Require the permittee to monitor its discharge for any pollutant, which may likely be discharged from the permittee's facility, should the industrial user fail to properly pretreat its waste.
- 7. The Director retains, at all times, the right to take legal action against the industrial user and/or the treatment works, in those cases where a permit violation has occurred because of the failure of an industrial user to discharge at an acceptable level. If the permittee has failed to properly delineate maximum acceptable industrial contributor levels, the Director will look primarily to the permittee as the responsible party.
- 8. If local limits are developed per R317-8-8.5(4)(b) to protect the POTW from pass through or interference, then the POTW must submit limits to DWQ for review and public notice R317-8-8.5(4)(c).

III. MONITORING, RECORDING & GENERAL REPORTING REQUIREMENTS

- A. Representative Sampling. Samples taken in compliance with the monitoring requirements established under *Part I* shall be collected from the effluent stream prior to discharge into the receiving waters. Samples and measurements shall be representative of the volume and nature of the monitored discharge. Samples of biosolids shall be collected at a location representative of the quality of biosolids immediately prior to the use-disposal practice.
- B. <u>Monitoring Procedures.</u> Monitoring must be conducted according to test procedures approved under *Utah Administrative Code ("UAC") R317-2-10 and 40CFR Part 503*, unless other test procedures have been specified in this permit.
- C. <u>Penalties for Tampering.</u> The *Act* provides that any person who falsifies, tampers with, or knowingly renders inaccurate, any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than six months per violation, or by both.
- D. <u>Compliance Schedules</u>. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any Compliance Schedule of this permit shall be submitted no later than 14 days following each schedule date.
- E. Additional Monitoring by the Permittee. If the permittee monitors any parameter more frequently than required by this permit, using test procedures approved under *UAC R317-2-10* and *40 CFR 503* or as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or the Biosolids Report Form. Such increased frequency shall also be indicated. Only those parameters required by the permit need to be reported.
- F. Records Contents. Records of monitoring information shall include:
 - 1. The date, exact place, and time of sampling or measurements:
 - 2. The individual(s) who performed the sampling or measurements;
 - 3. The date(s) and time(s) analyses were performed;
 - 4. The individual(s) who performed the analyses;
 - 5. The analytical techniques or methods used; and,
 - 6. The results of such analyses.
- G. Retention of Records. The permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least five years from the date of the sample, measurement, report or application. This period may be extended by request of the Director at any time. A copy of this UPDES permit must be maintained on site during the duration of activity at the permitted location

H. Twenty-four Hour Notice of Noncompliance Reporting.

- 1. The permittee shall (orally) report any noncompliance including transportation accidents, spills, and uncontrolled runoff from biosolids transfer or land application sites which may seriously endanger health or environment, as soon as possible, but no later than twenty-four (24) hours from the time the permittee first became aware of circumstances. The report shall be made to the Division of Water Quality, (801) 538-6146, or 24-hour answering service (801) 536-4123.
- 2. The following occurrences of noncompliance shall be reported by telephone (801) 536-4123 as soon as possible but no later than 24 hours from the time the permittee becomes aware of the circumstances:
 - a. Any noncompliance which may endanger health or the environment;
 - b. Any unanticipated bypass, which exceeds any effluent limitation in the permit (See *Part IV.G, Bypass of Treatment Facilities.*);
 - c. Any upset which exceeds any effluent limitation in the permit (See *Part IV.H*, *Upset Conditions.*);
 - d. Violation of a maximum daily discharge limitation for any of the pollutants listed in the permit; or,
 - e. Violation of any of the Table 3 metals limits, the pathogen limits, the vector attraction reduction limits or the management practices for biosolids that have been sold or given away.
- 3. A written submission shall also be provided within five days of the time that the permittee becomes aware of the circumstances. The written submission shall contain:
 - a. A description of the noncompliance and its cause;
 - b. The period of noncompliance, including exact dates and times;
 - c. The estimated time noncompliance is expected to continue if it has not been corrected;
 - d. Steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance; and,
 - e. Steps taken, if any, to mitigate the adverse impacts on the environment and human health during the noncompliance period.

- 4. The Director may waive the written report on a case-by-case basis if the oral report has been received within 24 hours by the Division of Water Quality, (801) 538-6146.
- 5. Reports shall be submitted to the addresses in *Part I.D*, *Reporting of Monitoring Results*.
- I. Other Noncompliance Reporting. Instances of noncompliance not required to be reported within 24 hours shall be reported at the time that monitoring reports for *Part I.D* are submitted. The reports shall contain the information listed in *Part III.H.3*
- J. <u>Inspection and Entry</u> The permittee shall allow the Director, or an authorized representative, upon the presentation of credentials and other documents as may be required by law, to:
 - 1. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of the permit;
 - 2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
 - 3. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit, including but not limited to, biosolids treatment, collection, storage facilities or area, transport vehicles and containers, and land application sites;
 - 4. Sample or monitor at reasonable times, for the purpose of assuring permit compliance or as otherwise authorized by the *Act*, any substances or parameters at any location, including, but not limited to, digested biosolids before dewatering, dewatered biosolids, biosolids transfer or staging areas, any ground or surface waters at the land application sites or biosolids, soils, or vegetation on the land application sites; and,
 - 5. The permittee shall make the necessary arrangements with the landowner or leaseholder to obtain permission or clearance, the Director, or authorized representative, upon the presentation of credentials and other documents as may be required by law, will be permitted to enter without delay for the purposes of performing their responsibilities.

IV. COMPLIANCE RESPONSIBILITIES

- A. <u>Duty to Comply</u>. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. The permittee shall give advance notice to the Director of any planned changes in the permitted facility or activity, which may result in noncompliance with permit requirements.
- B. Penalties for Violations of Permit Conditions. The Act provides that any person who violates a permit condition implementing provisions of the Act is subject to a civil penalty not to exceed \$10,000 per day of such violation. Any person who willfully or negligently violates permit conditions or the Act is subject to a fine not exceeding \$25,000 per day of violation. Any person convicted under UCA 19-5-115(2) a second time shall be punished by a fine not exceeding \$50,000 per day. Except as provided at Part IV.G, Bypass of Treatment Facilities and Part IV.H, Upset Conditions, nothing in this permit shall be construed to relieve the permittee of the civil or criminal penalties for noncompliance.
- C. Need to Halt or Reduce Activity not a Defense. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- D. <u>Duty to Mitigate</u>. The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit, which has a reasonable likelihood of adversely affecting human health or the environment. The permittee shall also take all reasonable steps to minimize or prevent any land application in violation of this permit.
- E. <u>Proper Operation and Maintenance</u>. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems, which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
- F. <u>Removed Substances</u>. Collected screening, grit, solids, sludge, or other pollutants removed in the course of treatment shall be disposed of in such a manner so as to prevent any pollutant from entering any waters of the state or creating a health hazard. Sludge/digester supernatant and filter backwash

shall not directly enter either the final effluent or waters of the state by any other direct route.

G. Bypass of Treatment Facilities.

1. <u>Bypass Not Exceeding Limitations</u>. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to paragraph 2 and 3 of this section.

2. Prohibition of Bypass.

- a. Bypass is prohibited, and the Director may take enforcement action against a permittee for bypass, unless:
 - (1) Bypass was unavoidable to prevent loss of human life, personal injury, or severe property damage;
 - (2) There were no feasible alternatives to bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgement to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance, and
 - (3) The permittee submitted notices as required under section IV.G.3.
- b. The Director may approve an anticipated bypass, after considering its adverse effects, if the Director determines that it will meet the three conditions listed in *sections IV.G.2.a* (1), (2) and (3).

3. Notice.

- a. Anticipated bypass. Except as provided above in section IV.G.2 and below in section IV.G.3.b, if the permittee knows in advance of the need for a bypass, it shall submit prior notice, at least ninety days before the date of bypass. The prior notice shall include the following unless otherwise waived by the Director:
 - (1) Evaluation of alternative to bypass, including cost-benefit analysis containing an assessment of anticipated resource damages:

- (2) A specific bypass plan describing the work to be performed including scheduled dates and times. The permittee must notify the Director in advance of any changes to the bypass schedule;
- (3) Description of specific measures to be taken to minimize environmental and public health impacts;
- (4) A notification plan sufficient to alert all downstream users, the public and others reasonably expected to be impacted by the bypass;
- (5) A water quality assessment plan to include sufficient monitoring of the receiving water before, during and following the bypass to enable evaluation of public health risks and environmental impacts; and,
- (6) Any additional information requested by the Director.
- b. *Emergency Bypass*. Where ninety days advance notice is not possible, the permittee must notify the Director, and the Director of the Department of Natural Resources, as soon as it becomes aware of the need to bypass and provide to the Director the information in *section IV.G.3.a.(1) through (6)* to the extent practicable.
- c. *Unanticipated bypass*. The permittee shall submit notice of an unanticipated bypass to the Director as required under *Part III.H*, Twenty Four Hour Reporting. The permittee shall also immediately notify the Director of the Department of Natural Resources, the public and downstream users and shall implement measures to minimize impacts to public health and environment to the extent practicable.

H. Upset Conditions.

- 1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with technology based permit effluent limitations if the requirements of paragraph 2 of this section are met. Director's administrative determination regarding a claim of upset cannot be judiciously challenged by the permittee until such time as an action is initiated for noncompliance.
- 2. Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - a. An upset occurred and that the permittee can identify the cause(s) of the upset;

PART IV DISCHARGE PERMIT NO. UT0023001

- b. The permitted facility was at the time being properly operated;
- c. The permittee submitted notice of the upset as required under *Part III.*, *Twenty-four Hour Notice of Noncompliance Reporting*; and,
- d. The permittee complied with any remedial measures required under *Part IV.D*, *Duty to Mitigate*.
- 3. Burden of proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

V. GENERAL REQUIREMENTS

- A. <u>Planned Changes</u>. The permittee shall give notice to the Director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when the alteration or addition could significantly change the nature or increase the quantity of parameters discharged or pollutant sold or given away. This notification applies to pollutants, which are not subject to effluent limitations in the permit. In addition, if there are any planned substantial changes to the permittee's existing sludge facilities or their manner of operation or to current sludge management practices of storage and disposal, the permittee shall give notice to the Director of any planned changes at least 30 days prior to their implementation.
- B. <u>Anticipated Noncompliance</u>. The permittee shall give advance notice to the Director of any planned changes in the permitted facility or activity, which may result in noncompliance with permit requirements.
- C. <u>Permit Actions</u>. This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.
- D. <u>Duty to Reapply</u>. If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee shall apply for and obtain a new permit. The application shall be submitted at least 180 days before the expiration date of this permit.
- E. <u>Duty to Provide Information</u>. The permittee shall furnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the Director, upon request, copies of records required to be kept by this permit.
- F. Other Information. When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or any report to the Director, it shall promptly submit such facts or information.
- G. <u>Signatory Requirements</u>. All applications, reports or information submitted to the Director shall be signed and certified.
 - 1. All permit applications shall be signed by either a principal executive officer or ranking elected official.

- 2. All reports required by the permit and other information requested by the Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described above and submitted to the Director, and,
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility, such as the position of plant manager, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters. A duly authorized representative may thus be either a named individual or any individual occupying a named position.
- 3. <u>Changes to authorization</u>. If an authorization under *paragraph V.G.2* is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of *paragraph V.G.2*. must be submitted to the Director prior to or together with any reports, information, or applications to be signed by an authorized representative.
- 4. <u>Certification</u>. Any person signing a document under this section shall make the following certification:
 - "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."
- H. Penalties for Falsification of Reports. The Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction be punished by a fine of not more than \$10,000.00 per violation, or by imprisonment for not more than six months per violation, or by both.
- I. <u>Availability of Reports</u>. Except for data determined to be confidential under *UAC R317-8-3.2*, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the office of Director. As

- required by the *Act*, permit applications, permits and effluent data shall not be considered confidential.
- J. Oil and Hazardous Substance Liability. Nothing in this permit shall be construed to preclude the permittee of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under the *Act*.
- K. <u>Property Rights</u>. The issuance of this permit does not convey any property rights of any sort, or any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations.
- L. <u>Severability</u>. The provisions of this permit are severable, and if any provisions of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.
- M. <u>Transfers</u>. This permit may be automatically transferred to a new permittee if:
 - 1. The current permittee notifies the Director at least 20 days in advance of the proposed transfer date;
 - 2. The notice includes a written agreement between the existing and new permittee's containing a specific date for transfer of permit responsibility, coverage, and liability between them; and,
 - 3. The Director does not notify the existing permittee and the proposed new permittee of his or her intent to modify, or revoke and reissue the permit. If this notice is not received, the transfer is effective on the date specified in the agreement mentioned in paragraph 2 above.
- N. State or Federal Laws. Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable state law or regulation under authority preserved by *UCA 19-5-117* and *Section 510* of the *Act* or any applicable Federal or State transportation regulations, such as but not limited to the Department of Transportation regulations.
- O. <u>Water Quality Reopener Provision</u>. This permit may be reopened and modified (following proper administrative procedures) to include the appropriate effluent limitations and compliance schedule, if necessary, if one or more of the following events occurs:

- 1. Water Quality Standards for the receiving water(s) to which the permittee discharges are modified in such a manner as to require different effluent limits than contained in this permit.
- 2. A final wasteload allocation is developed and approved by the State and/or EPA for incorporation in this permit.
- 3. Revisions to the current CWA § 208 areawide treatment management plans or promulgations/revisions to TMDLs (40 CFR 130.7) approved by the EPA and adopted by DWQ which calls for different effluent limitations than contained in this permit.
- P. <u>Biosolids Reopener Provision</u>. This permit may be reopened and modified (following proper administrative procedures) to include the appropriate biosolids limitations (and compliance schedule, if necessary), management practices, other appropriate requirements to protect public health and the environment, or if there have been substantial changes (or such changes are planned) in biosolids use or disposal practices; applicable management practices or numerical limitations for pollutants in biosolids have been promulgated which are more stringent than the requirements in this permit; and/or it has been determined that the permittees biosolids use or land application practices do not comply with existing applicable state of federal regulations.
- Q. <u>Toxicity Limitation Reopener Provision</u>. This permit may be reopened and modified (following proper administrative procedures) to include, whole effluent toxicity (WET) limitations, a compliance date, a compliance schedule, a change in the whole effluent toxicity (biomonitoring) protocol, additional or modified numerical limitations, or any other conditions related to the control of toxicants if one or more of the following events occur;
 - 1. The TRE results indicate that compliance with the toxic limits will require an implementation schedule past the date for compliance and the Director agrees with the conclusion.
 - 2. The TRE results indicate that the toxicant(s) represent pollutant(s) that may be controlled with specific numerical limits, and the Director agrees that numerical controls are the most appropriate course of action.
 - 3. Following the implementation of numerical control(s) of toxicant(s), the Director agrees that a modified biomonitoring protocol is necessary to compensate for those toxicant that are controlled numerically.
 - 4. The TRE reveals other unique conditions or characteristics, which in the opinion of the permit issuing authority justify the incorporation of unanticipated special conditions in the permit.

PART V DISCHARGE PERMIT NO. UT0023001

R. <u>Storm Water-Reopener Provision</u>. At any time during the duration (life) of this permit, this permit may be reopened and modified (following proper administrative procedures) as per *UAC R317.8*, to include, any applicable storm water provisions and requirements, a storm water pollution prevention plan, a compliance schedule, a compliance date, monitoring and/or reporting requirements, or any other conditions related to the control of storm water discharges to "waters-of-State".

VI. DEFINITIONS

A. Wastewater.

- 1. The "7-day (and weekly) average", other than for e-coli bacteria, fecal coliform bacteria, and total coliform bacteria, is the arithmetic average of all samples collected during a consecutive 7-day period or calendar week, whichever is applicable. Geometric means shall be calculated for e-coli bacteria, fecal coliform bacteria, and total coliform bacteria. The 7-day and weekly averages are applicable only to those effluent characteristics for which there are 7-day average effluent limitations. The calendar week, which begins on Sunday and ends on Saturday, shall be used for purposes of reporting self-monitoring data on discharge monitoring report forms. Weekly averages shall be calculated for all calendar weeks with Saturdays in the month. If a calendar week overlaps two months (i.e., the Sunday is in one month and the Saturday in the following month), the weekly average calculated for that calendar week shall be included in the data for the month that contains Saturday.
- 2. The "30-day (and monthly) average," other than for e-coli bacteria, fecal coliform bacteria and total coliform bacteria, is the arithmetic average of all samples collected during a consecutive 30-day period or calendar month, whichever is applicable. Geometric means shall be calculated for e-coli bacteria, fecal coliform bacteria and total coliform bacteria. The calendar month shall be used for purposes of reporting self-monitoring data on discharge monitoring report forms.
- 3. "Act," means the Utah Water Quality Act.
- 4. "Acute toxicity" occurs when 50 percent or more mortality is observed for either test species at any effluent concentration.
- 5. "Bypass," means the diversion of waste streams from any portion of a treatment facility.
- 6. "Chronic toxicity" occurs when the survival, growth, or reproduction for either test species exposed to a dilution of 25 percent effluent (or lower) is significantly less (at the 95 percent confidence level) than the survival, growth, or reproduction of the control specimens.
- 7. "Composite Samples" shall be flow proportioned. The composite sample shall, as a minimum, contain at least four (4) samples collected over the compositing period. Unless otherwise specified, the time between the collection of the first sample and the last sample shall not be less than six (6) hours nor more than 24 hours. Acceptable methods for preparation of composite samples are as follows:

- a. Constant time interval between samples, sample volume proportional to flow rate at time of sampling;
- b. Constant time interval between samples, sample volume proportional to total flow (volume) since last sample. For the first sample, the flow rate at the time the sample was collected may be used;
- c. Constant sample volume, time interval between samples proportional to flow (i.e., sample taken every "X" gallons of flow); and,
- d. Continuous sample volume, with sample collection rate proportional to flow rate.
- 8. "CWA," means *The Federal Water Pollution Control Act*, as amended, by *The Clean Water Act of 1987*.
- 9. "Daily Maximum" (Daily Max.) is the maximum value allowable in any single sample or instantaneous measurement.
- 10. "EPA," means the United States Environmental Protection Agency.
- 11. "Director," means Director of the Utah Division of Water Quality.
- 12. A "grab" sample, for monitoring requirements, is defined as a single "dip and take" sample collected at a representative point in the discharge stream.
- 13. An "instantaneous" measurement, for monitoring requirements, is defined as a single reading, observation, or measurement.
- 14. "Severe Property Damage," means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- 15. "Upset," means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventative maintenance, or careless or improper operation.